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Abstract—How can we detect suspicious users in large online
networks? Online popularity of a user or product (via follows,
page-likes, etc.) can be monetized on the premise of higher ad
click-through rates or increased sales. Web services and social
networks which incentivize popularity thus suffer from a major
problem of fake connections from link fraudsters looking to
make a quick buck. Typical methods of catching this suspicious
behavior use spectral techniques to spot large groups of often
blatantly fraudulent (but sometimes honest) users. However,
small-scale, stealthy attacks may go unnoticed due to the nature
of low-rank eigenanalysis used in practice.

In this work, we take an adversarial approach to find and
prove claims about the weaknesses of modern, state-of-the-art
spectral methods and propose FBOX, an algorithm designed
to catch small-scale, stealth attacks that slip below the radar.
Our algorithm has the following desirable properties: (a) it has
theoretical underpinnings, (b) it is shown to be highly effective
on real data and (c) it is scalable (linear on the input size). We
evaluate FBOX on a large, public 41.7 million node, 1.5 billion
edge who-follows-whom social graph from Twitter in 2010 and
with high precision identify many suspicious accounts which have
persisted without suspension even to this day.

I. INTRODUCTION

In an online network, how can we distinguish honest users
from deceptive ones? Since many online services rely on
machine learning algorithms to recommend relevant content
to their users, it is crucial to their performance that user
feedback be legitimate and indicative of true interests. “Fake”
links via the use of sockpuppet/bot accounts can enable ar-
bitrary (frequently spammy or malicious) users and products
of varying nature seem credible and popular, thus degrading
the online experience of users. Unsurprisingly, numerous sites
such as buy1000followers.co, boostlikes.com and
buyamazonreviews.com exist to provide services such
as fake Twitter followers, Facebook page-likes and Amazon
product reviews for typically just a few dollars per one-
thousand fake links.

Here we focus exactly on the link-fraud problem. We take
an adversarial approach to illustrate when and how current
methods fail to detect fraudsters and design a new complemen-
tary algorithm, FBOX, to spot attackers who evade these state-
of-the-art techniques. Figure 1 showcases several suspicious
accounts spotted by FBOX– we elaborate on three of them,
marked using the triangle, square and star glyphs. All three
are identified as outliers in the FBOX Spectral Reconstruction
Map (SRM) shown in Figure 1b. The corresponding Twitter

profiles are shown in Figure 1c, and further manual inspection
shows that all three accounts exhibit suspicious behavior:

• triangle: it has only 2 tweets but over 1000 followers
• square: it is part of a 50-clique with suspicious names
• star: it posts tweets advertising a link fraud service

Our main contributions are the following:

1) Theoretical analysis: We prove limitations of the detec-
tion range of spectral-based methods.

2) FBOX algorithm: We introduce FBOX, a scalable method
that boxes-in attackers, since it spots small-scale, stealth
attacks which evade spectral methods.

3) Effectiveness on real data: We apply FBOX to a real,
41.7 million node, 1.5 billion edge Twitter who-follows-
whom social graph from 2010 and identify many still-
active accounts with suspicious follower/followee links,
spammy Tweets and otherwise strange behavior.

Reproducibility: Our code is available at http://www.cs.
cmu.edu/∼neilshah/code/. The Twitter dataset is also publicly
available as cited in [8].

II. BACKGROUND AND RELATED WORK

The related work forms three groups: spectral methods,
graph traversal methods, and feature-based methods.

A. Spectral methods

We classify techniques that cluster the latent factors pro-
duced in graph-based spectral (eigendecomposition or singular
value decomposition) analysis of the adjacency matrix as
spectral methods. They include Prakash et al’s work on the
SpokEn algorithm for the EigenSpokes pattern [13] and Jiang
et al’s work on spectral subspaces of social networks [7].

These works both use the Singular Value Decomposition
(SVD) of the input graph’s adjacency matrix to group similar
users and objects based on their projections. Recall that the
SVD of a u×o matrix A is defined as A = UΣVT, where U
and V are u×u and o×o matrices respectively, containing the
left and right singular vectors, and Σ is a u×o diagonal matrix,
containing the singular values of A. Both papers try to spot
unusual patterns and microclusters in the projected subspaces,
retrieve the corresponding nodes and chip out communities of
similar users.

Both methods have shown use in finding large dense
communities, but as we show in Section III, they are likely
to miss smaller and stealthier link-fraud attacks.

http://www.cs.cmu.edu/~neilshah/code/
http://www.cs.cmu.edu/~neilshah/code/
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Fig. 1: FBOX catches stealth attacks which are missed by spectral methods. (a) shows a spectral subspace plots on the Twitter
social graph which identifies blatant attacks but ignores stealth attackers (at the origin). (b) portrays how the proposed FBOX
ISRM (In-link Spectral Reconstruction Map) can describe these users by their reconstruction degree and identifies several with
improbably poor reconstruction. (c) shows their suspicious profiles with matching glyphs (see text for details).

B. Graph-traversal based methods

Shrivastava et al [15] use random walks to detect random-
link attacks. Ghosh et al [5] proposes a PageRank-like ap-
proach to penalizing promiscuous users on Twitter, Beutel et
al propose the CopyCatch algorithm [2] which uses graph
traversal to find lock-step behavior and thus dense bipartite
cores of Facebook Page-Likes.

One major caveat with clustering methods is the non-
trivial identification of appropriate minimal detectable attack
parameters which must be finely tuned to avoid incurring false
positives while catching most true negatives.

C. Feature-based methods

Spam and fraud detection has classically been framed as a
feature-based classification problem, e.g. based on the words
in spam email or URLs in tweets. However, [6] focuses on
malicious Tweets and finds that blacklisting approaches are too
slow to stem the spread of Twitter spam. OddBall [1] proposes
features based on egonets to find anomalous users on weighted
graphs. In [3] and [10] the authors take a game theoretic
approach to learning simple classifiers over generic features
to detect spam. While related in the adversarial perspective,
these approaches focus on general feature-based classification
as used for spam email, rather than graph analysis.

III. AN ADVERSARIAL ANALYSIS - OUR PERSPECTIVE

Here we examine the state-of-the-art methods from an
adversarial point-of-view and present lemmas and theorems
showing their vulnerability to intelligent attackers. Table I
gives the list of symbols and definitions.

Formally, we pose the following adversarial problem:

Problem 1 (Evasion).

• Given: an input graph adjacency matrix A, with rows/-
columns corresponding to users/objects,

• Engineer a stealth attack
• to evade detection by modern spectral methods.

Current methods can find large bipartite cores or cliques
in the input graph, by studying the first k singular values and

Fraudsters
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Customers
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Fig. 2: (a), (b) and (c) show the different types of adversarial
attacks we characterize.

the corresponding subspaces. Therefore, if an adversary knows
the minimum size attack that detection methods will catch, he
can carefully engineer attacks to fall just below that threshold.
For clustering approaches, this threshold is clearly set based
on input parameters, and the attacker can simply use fewer
accounts than specified to avoid detection.

However, for spectral methods like SpokEn, the possible
attack size for an adversary is unclear. We argue that these
spectral methods have a detection threshold based on the
graph’s singular values. For a rank k decomposition used in
these methods, this threshold is governed by σk (kth largest
singular value). An adversary could estimate σk from experi-
mental attacks of varying sizes or by conducting analysis on
publicly available data. Then, as we show below, the adversary
can easily design attacks that will lie below this threshold,
not change the top k singular values/vectors and thus avoid
detection.

To analyze what type of attacks can evade detection by
spectral methods, let us consider that there are c customers who
have each bought s fraudulent actions (page likes, followers,
etc.) from an attacker that has f fake accounts in his botnet,
with s ≤ f . More formally, the attacker can control the
contents of an f × c submatrix S of the full adjacency matrix,
where the f rows correspond to the f available attacker nodes
and the c columns correspond to the customers, each of which
should receive s links.

As mentioned earlier, an attack will only be detected
by a spectral algorithm if it appears in the top k singular



TABLE I: Frequently used symbols and definitions

Symbol Definition
u and o Number of user and object nodes described by the input graph
A u× o input graph adjacency matrix where Ax,y = 1 if a link exists between user node x and object node y
f and c Number of attacker and customer nodes described by the attack graph
s Number of fraudulent actions each customer node has paid commission for in the attack graph
S f × c attack graph adjacency matrix where Sx,y = 1 if a link exists between attacker node x and customer node y
k Decomposition rank parameter used by spectral methods
λk and σk kth largest eigenvalue and singular value of a given matrix (largest values for k = 1)

values/vectors. Then, the goal of the attacker becomes to
understand the spectral properties of his attack so that he can
deliver on his promise with the customer without impacting
the top k decomposition.

We find that the attacker can achieve his goals even if
the submatrix S is disconnected from the rest of the graph.
It is well known that a disconnected subgraph retains its own
singular values in the singular spectrum of the overall graph.
As a result, we arrive at the following observation:

Observation 1. An f × c attack submatrix S, will evade
spectral methods that use threshold σk, if the attack has a
sufficiently small leading singular value σ′:

σ′ < σk

Thus, we know what the attacker has to do: design an attack
of f rows/accounts to c columns/customers, with s links per
customer, so that the leading singular value of S is below σk.
What are his choices, and which choices will allow him to
achieve this goal?

We explore three attack strategies: “naı̈ve”, “staircase” and
“random”. Figure 2 gives a pictorial representation of each
of these. We evaluate the suitability of each attack for an
adversary on the basis of the leading singular value that the
pattern generates.

A. Naı̈ve Injection

The naı̈ve injection distributes the sc total fraudulent ac-
tions into an s× c submatrix of S, creating a s× c complete
bipartite core as shown in Figure 2a.

Lemma 1. The leading singular value of an s × c bipartite
core injection is σ1 =

√
cs.

Proof: Omitted for brevity.

B. Staircase Injection

The staircase injection (discovered in [7]) evenly distributes
cs fraudulent actions over f attacker nodes. However, unlike
in the naı̈ve method, where each node that performs any
fraudulent actions does so for each of the c customers, the
staircase method links different subsets of nodes with different
subsets of customers. The resulting S sub-matrix resembles
staircase, as shown in Figure 2b.

We restrict our analysis here to staircase injections in which
all users have equal out-degrees o and equal in-degrees i,
though o need not equal i. When out degrees and in degrees are
not equal, users and objects do not have uniform connectivity
properties which complicates calculations. In particular, we

assume that the periodicity of the staircase pattern, given
by t = lcm(s, f)/s is such that t|c to ensure this criteria.
However, for large values of c/t, σ1 ≈ s

√
c/f given LLN.

Theorem 1. The leading singular value of an s, c, f staircase
injection is σ1 = s

√
c/f .

Proof: (Sketch): By noting that the staircase injection is
equivalent to a random graph-injection of f × c with edge
probability p = s/f .

C. Random Graph Injection

The random graph injection distributes roughly sc fraud-
ulent actions over the f attacker nodes approximately evenly.
Figure 2c shows a visual representation of such an attack. This
approach assigns each node a fixed probability p = s/f of
performing a fraudulent operation associated with one of the c
customers. The random graph injection is similar to the Erdös-
Rényi model defined by G(n, p) [4], except we consider a
directed graph scenario with cf possible edges.

Theorem 2. The leading singular value of an s, c, f directed
random bipartite graph is σ1 ∼ s

√
c/f .

Proof: (Sketch): by computing the expected row sums of
SST and applying the Perron-Frobenius theorem.

All proofs are given in more detail in [14].

D. Implications and Empirical Analysis
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Fig. 3: Skewed singular value distribution in real networks —
spectral (k-rank SVD) approaches suffer from stealth attacks.
(a) and (b) show distributions for corresponding networks
which allow stealth attacks capable of signficantly impacting
local network structure to go undetected.

Our analysis shows that two of the attack patterns, the stair-
case and random graph injections, produce leading singular
values of s

√
c/f respectively, whereas naı̈ve injection results

in a leading singular value of σ1 =
√
cs. Thus, it is apparent



TABLE II: Graphs used for empirical analysis

Graph Nodes Edges
Twitter [8] 41.7 million 1.5 billion
Netflix [12] 480k users & 17k videos 99 million
Epinions [9] 131,828 841,372
Slashdot [9] 82,144 549,202

Wikipedia [9] 8274 114,040

that naı̈ve injection is the least suitable for an adversarial
use, since it will necessarily produce a larger singular value
than the other two methods. Our results beget two important
conclusions – firstly, that smarter means of attack than naı̈ve
exist and must be considered by detection algorithms and
secondly, attackers can easily engineer attacks of scale up to
just below thresholds without consequence by characterizing
the singular values of their attacks.

To demonstrate that this leaves a significant opening for
attackers, we analyze the distribution of singular values for
a variety of real world graphs listed in Table II and show
the results in Figure 3. Specifically, we use the Twitter who-
follows-whom, Netflix product ratings, Epinions who-trusts-
whom, Slashdot friend/foe and Wikipedia’s administrative
election graphs.

For a rank k = 50 decomposition, we observe the follow-
ing: An attacker controlling 960 Twitter accounts could use
them to follow 960 other accounts without being caught by
existing spectral methods. In the Netflix scenario, an attacker
could introduce 300 fake reviews to 300 movies. The same
analyses can be extended to Epinions (30 trust links to 30
users, where the average number of links per user is only 6),
Slashdot (23 ratings for 23 users where the average number of
ratings per user is only 6) and Wikipedia (17 users voting on 17
elections, enough to win 31% of elections automatically). From
these examples across a variety of networks, we see that using
spectral approaches for catching fraud leaves a wide opening
for attackers to manipulate online graphs.

IV. PROPOSED ALGORITHM

Thus far, we have seen how existing state-of-the-art tech-
niques have firm effective detection thresholds and are entirely
ineffective in detecting stealth attacks that fall below this
threshold. Given this problem, it is natural to consider the
following question — how can we identify the many numerous
small scale attacks that are prone to slipping below the radar
of existing techniques? In this section, we formalize our
problem definition and propose FBOX as a suitable method
for addressing this problem.

A. Problem Formulation

We identify the major problem to be addressed as follows:

Problem 2. Given an input graph adjacency matrix A, with
rows/columns corresponding to users/objects, identify stealth
attackers which are undetectable given a desired decomposi-
tion rank-k for A.

Note that Problem 2 is an exact foil to Problem 1. In this
paper, we primarily focus on smart attacks which fall below
a practitioner-defined spectral threshold, given that a number

of previous works mentioned have tackled the problem of
discovering blatant attacks. Given that this body of work is
effective in detecting such attacks, we envision that the best
means of boxing in attackers is a complementary approach to
existing methods.

Require: Input graph adjacency matrix A,
Decomposition rank k,
Threshold τ

1: userCulprits = {}
2: objectCulprits = {}
3: outDegrees = rowSum(A)
4: inDegrees = colSum(A)
5: [U,Σ,V] = svd(A, k)
6: for each row i in UΣ do
7: reconstructedOutDegrees = ‖(UΣ)i‖22
8: end for
9: for each row j in VΣ do

10: reconstructedInDegrees = ‖(VΣ)j‖22
11: end for
12: for each unique od in outDegrees do
13: nodeSet = find(outDegrees == od)
14: reconstructedOutDegreeSet = reconstructedOutDegrees(nodeSet)
15: recThreshold = percentile(reconstructedOutDegreeSet, τ)
16: for each node n in nodeSet do
17: if reconstructedOutDegrees(n) ≤ recThreshold then
18: userCulprits = userCulprits + n
19: end if
20: end for
21: end for
22: for each unique id in inDegrees do
23: nodeSet = find(inDegrees == id)
24: reconstructedInDegreeSet = reconstructedInDegrees(nodeSet)
25: recThreshold = percentile(reconstructedInDegreeSet, τ)
26: for each node n in nodeSet do
27: if reconstructedInDegrees(n) ≤ recThreshold then
28: objectCulprits = objectCulprits + n
29: end if
30: end for
31: end for
32: return userCulprits,

objectCulprits

Algorithm 1: FBOX algorithm pseudocode

B. Description

As per the problem formulation, we seek to develop a
solely graph-based method, which will be able to complement
existing fraud detection techniques by discerning previously
undetectable attacks. In Section III, we demonstrated that
smaller attacks do not appear in the singular vectors given by
a rank k decomposition. Assuming an isolated attack which
has been engineered to fall below the detection threshold, the
users/objects comprising the attack will have absolutely no
projection onto any of the top-k left and right singular vectors
respectively. If the attack is only near-isolated, projection of
the culprit nodes may increase slightly, but should still be near-
zero given sparsity of connection to the honest graph. Given
this observation, two questions naturally arise: (a) how can we
effectively capture the extent of projection of a user or object?
and (b) is there a pattern to how users or objects project into
low-rank subspaces?

In fact, we can address the first question by taking advan-
tage of the norm-preserving property of SVD, which states that
the row vectors of a full rank decomposition and associated
projection will retain the same l2 norm or vector length as in
the original space. That is, for k = rank(A),

‖Ai‖2 = ‖(UΣ)i‖2 for i ≤ u
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(a) OSRM for Twitter fans

In−degree

R
e
c
o

n
s
tr

u
c
te

d
 I
n

−
d

e
g

re
e

 

 

64 212 702 2317 7650 25253 83353 275128 908123 2.99747e+06

6.36238e−35

1.36415e−30

2.92484e−26

6.27108e−22

1.34457e−17

2.88287e−13

6.18109e−09

0.000132528

2.8415

60924

0

50

100

150

200

250

300

(b) ISRM for Twitter idols

Fig. 4: SRMs show correlation between the reconstruction
degree and suspiciousness of nodes. (a) and (b) show the SRMs
produced from analysis on the Twitter social graph.

In the same fashion, one can apply the norm-preserving
property to decomposition of AT to show

‖AT
j‖2 = ‖(VΣ)j‖2 for j ≤ o

Since the l2 norms are preserved in a full rank decompo-
sition, it is obvious that the sum of squares of components are
also preserved. Note that for the 0-1 adjacency matrix A we
consider here, the sum of squares of components of the ith row
vector corresponds to the out-degree of user i and the sum of
squares of components of the jth column vector corresponds
to the in-degree of object j — given these considerations,
we define the true/reconstructed degree of a node in a given
subspace as the squared l2 norm of its vector in that space.

We conjecture that due to the different graph connectivity
patterns of dishonest and honest users/objects, their projections
in terms of reconstructed degrees should also vary. Intuitively,
dishonest users who either form isolated components or link to
dishonest objects will project poorly whereas honest users who
are well-connected to real products and brands should project
well. In fact, we find that in real data, users and objects have
certain ranges in which they commonly reconstruct in the latent
space. Figure 4 shows the OSRM and ISRM (Out-link/In-link
Spectral Reconstruction Maps) for a large, multi-million node
and multi-billion edge social graph from Twitter, where we
model follower (fan) and followee (idol) behavior. The data
is represented in heatmap form to indicate the concentration
of projection. The SRMs indicate that for each true degree,
there is a tailed distribution with most nodes reconstructing in
a common (reddish color) range and few nodes reconstructing
as we move away from this range in either direction (bluish
color). Most notably, there are a large number of nodes with
degrees up to the thousands which project several orders of
magnitude lower than the rest, well-depicted by a clearly
isolated point cloud at the bottom of both SRMs.

These observations serve to substantiate our conjecture that
poorly reconstructing nodes are suspicious, but what about the
well reconstructing nodes? Interestingly, we find that nodes
which reconstruct on the high range of the spectrum for a
given degree have many links to popular and verified Twitter
accounts. We do not classify such behavior as suspicious, as it
is common for Twitter users to be connected with popular ac-
tors, musicians, brands, etc. At the bottom of the reconstruction
spectrum, however, we most commonly find accounts which
demonstrate a number of notably suspicious behaviors in the
context of their followers/followees and the content of their
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Fig. 5: (a) and (b) show FBOX’s strong predictive value and
low false-discovery rate in identifying suspicious accounts.

Tweets – we focus our algorithm on identifying these. The
FBOX algorithm pseudocode is given in Algorithm 1.

V. EXPERIMENTS

A. Datasets

For our experiments we primarily use two datasets: the
who-follows-whom Twitter graph and the who-rates-what
Amazon graph. The Twitter graph was scraped by Kwak et
al. in 2010 and contains 41.7 million users with 1.5 billion
edges [8]. The Amazon ratings graph was scraped in March
2013 by McAuley and Leskovec [11] and contains 29 million
reviews from 6 million users about 2 million products. Our
analysis is conducted both directly and via synthetic attacks.

B. FBOX on real Twitter accounts

To show our effectiveness in catching smart link fraud
attacks on real data, we conducted a classification experiment
on data from the Twitter graph. Specifically, we collected the
culprit results for suspicious fans and idols with degree at least
20 (to avoid catching unused accounts) for seven different
values of the detection threshold τ , at 0.5, 1, 5, 10, 25, 50
and 99 percentile. For each combination of τ value and user
type (fan or idol), we randomly sampled 50 accounts from the
“culprit-set” of accounts classified as suspicious by FBOX and
another 50 accounts from the remainder of the graph in a 1:1
fashion, for a total of 1400 accounts. We randomly organized
and labeled these accounts as suspicious or honest based
on several criteria including suspension since data collection,
spammy tweets, suspicious usernames, and sparse profiles/few
tweets but large numbers of suspicious followers.

Figure 5 shows how the performance of FBOX varies
with the threshold τ for Twitter fans and idols. As evidenced
by the results, FBOX is able to correctly discern suspicious
accounts with 0.93+ precision for τ ≤ 1 for both fans and
idols. Since recall is impossible to calculate given unbounded
false negatives, we observe that negative precision increases
as we increase τ . With these considerations, we recommend
conservative threshold values for practitioner use. On Twitter
data, we found roughly 150 thousand accounts classified as
suspicious between the SRMs for τ = 1.

C. Complementarity of FBOX

As mentioned before, FBOX is complementary to spectral
techniques and is effective in catching smart attacks that
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Fig. 6: FBOX and SPOKEN are complementary, with FBOX
detecting smaller stealth attacks missed by SPOKEN. (a) shows
how spectral subspace plots identify blatant attacks but ignore
smaller ones. (b) shows the ISRM plot clearly identifying the
suspiciousness of the small attack.

adversaries could engineer to avoid detection by these tech-
niques. We demonstrate this claim using both synthetically
formulated attacks on the Amazon network as well as com-
paring the performance of both FBOX and SPOKEN on the
Twitter network. In the first experiment, we inject random
attacks of scale 100 and 400, each with density p = 0.5 into
the Amazon graph and compare the effectiveness of spectral
subspace plots and SRMs in spotting these attacks. Figure 6a
shows the spectral subspace plot for the 1st and 15th singular
vectors, corresponding to a naturally existing community and
the blatant attack, respectively. The plot clearly shows nodes
involved in the blatant attack as a spoke, but groups nodes
involved in the small attack along with many other honest
nodes at the origin. However, in Figure 6b, we see that the
ISRM distinguishes the attack from other legitimate behavior.

In our second experiment, we compared the performance
of both FBOX and SPOKEN on a sample of 66K accounts
selected from the Twitter graph. For each of these accounts,
we queried the Twitter API to collect information regarding
whether the account was suspended or had posted Tweets
promoting adware/malware (checked via Google SafeBrows-
ing), and if so we marked the account as fraudulent. This
ground truth marking allows us to unbiasedly measure the
complementarity of FBOX and SPOKEN in catching users
that are surely malicious. Of these users, 4K were marked
as fraudulent via Twitter and Google SafeBrowsing. For rank
k = 50, SPOKEN produced 8K suspicious accounts whereas
FBOX (with τ = 1) produced 150K. The user sets identified by
both methods were found to be completely distinct, suggesting
that the methods are indeed complementary. Furthermore,
FBOX identified 1.1K suspicious accounts from the sampled
dataset, of which only 350 were caught via Twitter and
Google SafeBrowsing, suggesting that roughly 70% of FBOX-
classified suspicious accounts are missed by Twitter.

D. Scalability of FBOX

The running time of FBOX is dominated by the (linear)
large matrix-vector multiplication per iteration of the Lanczos
algorithm to compute SVD for large, sparse matrices.

VI. CONCLUSIONS

In this work, we focused on spotting fraudsters and their
customers in online social networks and web services. Our
main contributions are:

1) Theoretical analysis: in order to examine spectral char-
acteristics of certain attacks and identify limitations of
existing detection methods

2) FBOX algorithm: a complementary method to existing
spectral approaches that detects stealth attacks which
previous methods miss

3) Effectiveness on real data: we apply FBOX to a large
Twitter who-follows-whom dataset from 2010 and dis-
cover many tens of thousands of suspicious users

Our experiments show that our method is scalable, effective
in detecting small-scale attacks on real data and catches a class
of fraudsters previously undetected by existing approaches.
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